#### **Energy and Spectrum Efficient Wireless Network Design**

Covering the fundamental principles and state-of-the-art cross-layer techniques, this practical guide provides the tools needed to design MIMO- and OFDM-based wireless networks that are both energy- and spectrum-efficient. Technologies are introduced in parallel for both centralized and distributed wireless networks to give you a clear understanding of the similarities and differences between their energy- and spectrum-efficient designs, which is essential for achieving the highest network energy saving without losing performance. Cutting-edge green cellular network design technologies, enabling you to master resource management for next-generation wireless networks based on MIMO and OFDM, and detailed real-world implementation examples are provided to guide your engineering design in both theory and practice. Whether you are a graduate student, a researcher, or a practitioner in industry, this is an invaluable guide.

**Guowang Miao** is an Assistant Professor in the Department of Communications Systems at KTH Royal Institute of Technology, Sweden. After receiving his Ph.D. in electrical and computer engineering from Georgia Institute of Technology, USA, in 2009, he spent two years working in industry as a Senior Standard Engineer at Samsung Telecom America. His current research interests are in the design and optimization of wireless communications and networking.

**Guocong Song** is currently the Principal Research Engineering at ShareThis, Palo Alto, California. He has been working in wireless communications and networks for a decade, since receiving his Ph.D. in electrical and computer engineering from Georgia Institute of Technology. He received the 2010 IEEE Stephen O. Rice Prize for the best paper in the field of communications theory, and he is recently active in the area of data science and machine learning. Cambridge University Press 978-1-107-03988-9 - Energy and Spectrum Efficient Wireless Network Design Guowang Miao and Guocong Song Frontmatter <u>More information</u>

# **Energy and Spectrum Efficient** Wireless Network Design

#### **GUOWANG MIAO**

KTH Royal Institute of Technology, Sweden

GUOCONG SONG ShareThis, Palo Alto, California





University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107039889

© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Miao, Guowang.

pages cm

Energy and spectrum efficient wireless network design / Guowang Miao, KTH Royal Institute of Technology, Sweden, Guocong Song, ShareThis, Palo Alto, California.

ISBN 978-1-107-03988-9 (Hardback)

Wireless communication systems–Energy conservation.
 Wireless communication systems–Energy consumption.
 Radio frequency allocation.
 Radio resource management (Wireless communications).
 Engineering economy.
 Song, Guocong.
 Title.
 TK5102.86.M53 2014

621.384-dc23 2014020418

ISBN 978-1-107-03988-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Ting Ren, Eileen Miao, and Ryan Miao Wei and Lyra Cambridge University Press 978-1-107-03988-9 - Energy and Spectrum Efficient Wireless Network Design Guowang Miao and Guocong Song Frontmatter <u>More information</u>

## **Contents**

|        | Pref    | <i>page</i> xv                                   |      |
|--------|---------|--------------------------------------------------|------|
|        | Acre    | onyms                                            | xvii |
| 1      | Intro   | oduction                                         | 1    |
|        | 1.1     | Motivation                                       | 1    |
|        | 1.2     | Wireless networks                                | 2    |
|        |         | 1.2.1 Overview                                   | 2    |
|        |         | 1.2.2 Traditional layered architecture           | 4    |
|        |         | 1.2.3 Necessity of cross-layer optimization      | 6    |
|        | 1.3     | Book outline                                     | 8    |
| Part I | Basic o | concepts                                         | 11   |
| 2      | Wire    | eless channel properties                         | 15   |
|        | 2.1     | Path loss                                        | 15   |
|        | 2.2     | Shadowing                                        | 16   |
|        | 2.3     | Small-scale fading                               | 17   |
|        |         | 2.3.1 Flat-fading channels                       | 18   |
|        |         | 2.3.2 Frequency-selective fading channels        | 20   |
|        | 2.4     | Channel estimation                               | 20   |
|        |         | 2.4.1 Flat slow-fading channels                  | 21   |
|        |         | 2.4.2 Frequency-selective slow-fading channels   | 22   |
|        |         | 2.4.3 Fast-fading channels                       | 23   |
|        |         | 2.4.4 Conclusion                                 | 23   |
|        | 2.5     | Other challenges                                 | 23   |
| 3      | Spe     | ctral and energy efficiency of wireless networks | 24   |
|        | 3.1     | Spectral efficiency                              | 24   |
|        | 3.2     | Energy efficiency                                | 25   |
|        | 3.3     | Link metrics versus network metrics              | 26   |
|        |         |                                                  | vii  |

| viii    | Contents |                                                                   |    |
|---------|----------|-------------------------------------------------------------------|----|
|         |          | 3.3.1 Link spectral efficiency                                    | 26 |
|         |          | 3.3.2 Network spectral efficiency                                 | 27 |
|         |          | 3.3.3 Link energy efficiency                                      | 29 |
|         |          | 3.3.4 Network energy efficiency                                   | 29 |
| 4       | Cen      | tralized resource management in wireless networks                 | 31 |
|         | 4.1      | Overview                                                          | 31 |
|         | 4.2      | Wireless scheduling challenges                                    | 32 |
|         | 4.3      | Centralized scheduling algorithms                                 | 34 |
|         |          | 4.3.1 Round-robin scheduling                                      | 35 |
|         |          | 4.3.2 Max throughput scheduling                                   | 36 |
|         |          | 4.3.3 Proportional fair scheduling                                | 37 |
|         |          | 4.3.4 Max-min scheduling                                          | 38 |
|         |          | 4.3.5 Max utility scheduling                                      | 39 |
| 5       | Dist     | ributed resource management in wireless networks                  | 43 |
|         | 5.1      | Overview                                                          | 43 |
|         | 5.2      | Aloha                                                             | 45 |
|         |          | 5.2.1 Pure Aloha                                                  | 45 |
|         |          | 5.2.2 Slotted Aloha                                               | 46 |
|         | 5.3      | Carrier sense multiple access (CSMA)                              | 46 |
|         |          | 5.3.1 Non-persistent CSMA                                         | 47 |
|         |          | 5.3.2 1-persistent CSMA                                           | 47 |
|         |          | 5.3.3 p-persistent CSMA                                           | 47 |
|         |          | 5.3.4 Effect of detection delay                                   | 47 |
|         | 5.4      | CSMA with collision detection                                     | 48 |
|         | 5.5      | Carrier sense multiple access with collision avoidance (CSMA/CA)  | 49 |
|         |          | 5.5.1 Hidden and exposed terminal problems                        | 49 |
|         |          | 5.5.2 CSMA/CA protocol                                            | 50 |
| Part II | Centra   | lized cross-layer optimization                                    | 53 |
| 6       | Ove      | rview                                                             | 55 |
|         | 6.1      | System model and problem description                              | 56 |
|         |          | 6.1.1 Channel characteristics in OFDM                             | 56 |
|         |          | 6.1.2 Rate adaptation in OFDM                                     | 58 |
|         |          | 6.1.3 Dynamic subcarrier assignment and adaptive power allocation | 58 |
|         |          | 6.1.4 Queue structure                                             | 59 |
|         |          | 6.1.5 Problem description                                         | 59 |
|         | 6.2      | Approach                                                          | 59 |

|   |                 | Contents                                                                                   | ix             |
|---|-----------------|--------------------------------------------------------------------------------------------|----------------|
| 7 | Utility-based o | ptimization framework for OFDMA                                                            | 61             |
|   | 7.1 Rate-base   | ed utility functions                                                                       | 61             |
|   | 7.2 Theoretic   | cal framework                                                                              | 62             |
|   | 7.2.1 Pi        | coblem formulation                                                                         | 62             |
|   | 7.2.2 D         | ynamic subcarrier assignment                                                               | 63             |
|   | 7.2.3 A         | daptive power allocation                                                                   | 66             |
|   | 7.2.4 Pr        | operties of cross-layer optimization                                                       | 69             |
| 8 | Algorithm deve  | elopment for utility-based optimization                                                    | 72             |
|   | 8.1 Dynamic     | subcarrier assignment (DSA) algorithms                                                     | 72             |
|   | 8.1.1 O         | ptimality conditions                                                                       | 73             |
|   | 8.1.2 Se        | orting-search algorithm of subcarrier assignment                                           | 75             |
|   | 8.2 Adaptive    | power allocation (APA) algorithms                                                          | 77             |
|   | 8.2.1 A         | PA for fixed subcarrier assignment                                                         | 77             |
|   | 8.2.2 Se        | equential-linear-approximation water-filling algorithm for                                 |                |
|   | сс              | ontinuous rate adaptation                                                                  | 78             |
|   | 8.2.3 G         | reedy power allocation algorithm based on maximizing total                                 |                |
|   | ut              | ility for discrete rate adaptation                                                         | 78             |
|   | 8.3 Joint dyn   | amic subcarrier assignment and adaptive power allocation                                   | 80             |
|   | 8.4 Algorith    | n modification for non-concave utility functions                                           | 81             |
|   | 8.5 Maximur     | n utility with respect to average data rates                                               | 81             |
|   | 8.6 Efficienc   | y and fairness                                                                             | 84             |
|   | 8.6.1 Fa        | airness of "extreme OFDM" using utility functions with respect                             |                |
|   | to              | instantaneous data rates                                                                   | 85             |
|   | 8.6.2 Fa        | airness of "practical OFDM" using utility functions with respect                           | o <b>r</b>     |
|   | to              | average data rates                                                                         | 85             |
|   | 8.7 Simulatio   | on results                                                                                 | 87             |
|   | 8.8 Summary     | 7                                                                                          | 93             |
| 9 | Joint channel-  | <ul> <li>and queue-aware multi-carrier scheduling using delay-based<br/>actions</li> </ul> | <b>d</b><br>04 |
|   |                 |                                                                                            |                |
|   | 9.1 Introduct   | ion                                                                                        | 94             |
|   | 9.2 Extendin    | g scheduling rules in single-carrier networks into                                         | 05             |
|   | OFDMA           | networks                                                                                   | 95             |
|   | 9.2.1 M         | lax-sum-capacity (MSC) rule                                                                | 95             |
|   | 9.2.2 Pi        | roportional fair (PF) scheduling                                                           | 96             |
|   | 9.2.3 M         | lodified largest weighted delay first (M-LWDF) rule                                        | 96             |
|   | 9.2.4 E         | xponential (EXP) rule                                                                      | 96             |
|   | 9.5 Max-dela    | tility functions                                                                           | 9/             |
|   | 9.3.1 U         | unty functions                                                                             | 9/             |
|   | 9.3.2 U         | pumization objective                                                                       | 9/             |
|   | 9.3.3 Pi        |                                                                                            | 99             |

| Х  | Contents                                                                |     |
|----|-------------------------------------------------------------------------|-----|
|    |                                                                         |     |
|    | 9.3.4 Algorithms                                                        | 100 |
|    | 9.4 Stability                                                           | 100 |
|    | 9.4.1 Background and definition of stability                            | 100 |
|    | 9.4.2 Capacity region                                                   | 101 |
|    | 9.4.3 Maximum stability region                                          | 102 |
|    | 9.5 Proof of Theorem 9.4                                                | 106 |
|    | 9.6 Further improvement through delay transmit diversity and adaptive   |     |
|    | power allocation                                                        | 110 |
|    | 9.6.1 Joint dynamic subcarrier assignment and adaptive power allocation | 110 |
|    | 9.6.2 Delay transmit diversity                                          | 111 |
|    | 9.7 Simulation results and performance comparison                       | 112 |
|    | 9.7.1 Performance comparison                                            | 112 |
|    | 9.7.2 Improvement in delay transmit diversity and adaptive power        |     |
|    | allocation                                                              | 116 |
|    | 9.8 Summary                                                             | 116 |
| 10 | Utility-based generalized QoS scheduling for heterogeneous traffic      | 117 |
|    | 10.1 Introduction                                                       | 117 |
|    | 10.2 MDU scheduling for heterogeneous traffic                           | 118 |
|    | 10.2.1 Mechanisms of MDU scheduling for diverse QoS requirements        | 118 |
|    | 10.2.2 Marginal utility functions for MDU scheduling                    | 119 |
|    | 10.3 Simulation                                                         | 120 |
|    | 10.3.1 Simulation conditions                                            | 120 |
|    | 10.3.2 Simulation results                                               | 121 |
|    | 10.4 Summary                                                            | 125 |
| 11 | Asymptotic performance analysis for channel-aware scheduling            | 126 |
|    | 11.1 Extreme value theory                                               | 126 |
|    | 11.2 Asymptotic throughput analysis of single-carrier networks          | 129 |
|    | 11.2.1 System model                                                     | 129 |
|    | 11.2.2 Throughput analysis for Rayleigh fading                          | 130 |
|    | 11.2.3 Throughput analysis for general channel distributions            | 133 |
|    | 11.2.4 Throughput analysis for normalized-SNR-based scheduling          | 136 |
|    | 11.2.5 Numerical results                                                | 138 |
|    | 11.3 Asymptotic delay analysis of single-carrier networks               | 139 |
|    | 11.3.1 Asymptotic distribution of service time                          | 140 |
|    | 11.3.2 Average waiting time                                             | 141 |
|    | 11.4 Asymptotic performance analysis of multi-carrier networks          | 142 |
|    | 11.4.1 Asymptotic throughput analysis                                   | 142 |
|    | 11.4.2 Asymptotic delay analysis                                        | 143 |
|    | 11.4.3 Delay performance comparison                                     | 144 |
|    | 11.5 Summary                                                            | 146 |
|    |                                                                         |     |

|          | Contents                                                                                                        | xi  |
|----------|-----------------------------------------------------------------------------------------------------------------|-----|
| Part III | Distributed cross-layer optimization                                                                            | 147 |
| 10       | Ονοενίουν                                                                                                       | 140 |
| 12       | O A CLAIR AND A | 149 |
|          | 12.1 Design objective                                                                                           | 149 |
|          | 12.2 Distributed multi-user diversity                                                                           | 150 |
|          | 12.3 Approaches                                                                                                 | 151 |
| 13       | Opportunistic random access: single-cell cellular networks                                                      | 154 |
|          | 13.1 Channel-aware Aloha                                                                                        | 154 |
|          | 13.1.1 Protocol design and parameter optimization                                                               | 157 |
|          | 13.1.2 Performance analysis                                                                                     | 159 |
|          | 13.2 Opportunistic splitting algorithms                                                                         | 160 |
| 14       | Opportunistic random access: any network topology                                                               | 164 |
|          | 14.1 Network model                                                                                              | 164 |
|          | 14.2 Optimal design rules                                                                                       | 166 |
|          | 14.2.1 MAC layer analysis                                                                                       | 167 |
|          | 14.2.2 Physical layer analysis                                                                                  | 168 |
|          | 14.2.3 Criterion for cross-layer design                                                                         | 169 |
|          | 14.3 Low-complexity MAC                                                                                         | 170 |
|          | 14.4 Optimal PHY operation                                                                                      | 173 |
|          | 14.4.1 Physical layer optimization with channel inversion                                                       | 173 |
|          | 14.4.2 Physical layer optimization with adaptive modulation and power                                           |     |
|          | allocation                                                                                                      | 175 |
|          | 14.5 System performance                                                                                         | 178 |
|          | 14.5.1 Network performance improvement                                                                          | 1/8 |
|          | 14.5.2 Suboptimality gap                                                                                        | 180 |
| 15       | Optimal channel-aware distributed MAC                                                                           | 182 |
|          | 15.1 System description                                                                                         | 183 |
|          | 15.2 Channel-aware medium access control                                                                        | 186 |
|          | 15.3 Optimization                                                                                               | 190 |
|          | 15.3.1 CRS 1                                                                                                    | 191 |
|          | 15.3.2 CRS $k, k > 1$                                                                                           | 192 |
|          | 15.4 Robustness analysis                                                                                        | 195 |
|          | 15.5 Simulation results                                                                                         | 198 |
| 16       | Opportunistic random access with intelligent interference avoidance                                             | 203 |
|          | 16.1 Intelligent interferer recognition                                                                         | 204 |
|          | 16.2 Co-channel interference avoidance MAC                                                                      | 206 |
|          | 16.3 Parameter optimization                                                                                     | 208 |

| xii     | Contents                                                              |            |
|---------|-----------------------------------------------------------------------|------------|
|         |                                                                       |            |
|         | 16.3.1 Trigger selection                                              | 208        |
|         | 16.3.2 An alternate trigger mechanism using location knowledge        | 210        |
|         | 16.4 Network performance                                              | 211        |
|         | 16.4.1 Relationship of trigger and SNR                                | 212        |
|         | 16.4.2 Performance improvement                                        | 213        |
| 17      | Distributed power control                                             | 217        |
|         | 17.1 System model                                                     | 217        |
|         | 17.2 Power control for real-time traffic                              | 218        |
|         | 17.2.1 Distributed power control                                      | 220        |
|         | 17.3 Power control for elastic traffic                                | 221        |
|         | 17.3.1 Existence of equilibrium                                       | 224        |
|         | 17.3.2 Uniqueness of equilibrium in single-channel systems            | 225        |
|         | 17.3.3 Uniqueness of equilibrium in multi-channel systems             | 228        |
|         | 17.3.4 Distributed power control with pricing                         | 231        |
| Part IV | Cross-layer optimization for energy-efficient networks                | 235        |
| 18      | Overview                                                              | 237        |
|         | 18.1 Lighting analogy                                                 | 238        |
|         | 18.2 Methodology                                                      | 240        |
| 19      | Energy-efficient transmission                                         | 244        |
|         | 19.1 Energy efficiency capacity                                       | 244        |
|         | 19.2 Ideal transmission                                               | 245        |
|         | 19.3 Energy-efficient transmission in practice                        | 246        |
|         | 19.4 Energy-efficient link adaptation in frequency-selective channels | 250        |
|         | 19.4.1 Modeling of energy-efficient link adaptation                   | 252        |
|         | 19.4.2 Design principles                                              | 253        |
|         | 19.4.3 Constrained energy-efficient link adaptation                   | 256        |
|         | 19.4.4 Energy-efficient downlink OFDMA transmission                   | 257        |
|         | 19.4.5 Iterative algorithm design                                     | 258        |
|         | 19.4.6 Energy efficiency gain                                         | 262        |
|         | 19.5 Low-complexity energy-efficient link adaptation                  | 263        |
|         | 19.6 Energy-efficient MIMO and MU-MIMO link adaptation                | 266        |
|         | 19.6.1 Energy-efficient MU-MIMO modeling                              | 267        |
|         | 19.6.2 Principles of energy-efficient MU-MIMO power allocation        | 270        |
|         | 19.6.4 Energy efficiency gain                                         | 271<br>277 |
| 20      | Centralized energy-efficient wireless resource management             | 282        |
|         | 20.1 Overview                                                         | 282        |
|         |                                                                       | 202        |

|    | Contents                                                                        | xiii |
|----|---------------------------------------------------------------------------------|------|
|    |                                                                                 |      |
|    | 20.1.1 Circuit component management                                             | 282  |
|    | 20.1.2 Time-domain resource management                                          | 283  |
|    | 20.1.3 Frequency-domain resource management                                     | 284  |
|    | 20.1.4 Spatial-domain resource management                                       | 284  |
|    | 20.2 Energy-efficient OFDMA in flat-fading channels                             | 285  |
|    | 20.2.1 Resource allocation without fairness                                     | 287  |
|    | 20.2.2 Resource allocation with fairness                                        | 288  |
|    | 20.2.3 Performance comparisons                                                  | 289  |
|    | 20.3 Energy-efficient scheduling in frequency-selective channels                | 291  |
|    | 20.3.1 Time-averaged network energy efficiency                                  | 292  |
|    | 20.3.2 Energy-efficient scheduler                                               | 294  |
|    | 20.3.3 Network performance                                                      | 297  |
| 21 | Distributed energy-efficient wireless resource management                       | 301  |
|    | 21.1 Distributed energy-efficient MAC design                                    | 301  |
|    | 21.1.1 General rules of distributed MAC design                                  | 302  |
|    | 21.1.2 Impact of traffic load on energy consumption                             | 304  |
|    | 21.2 Energy-efficient communications in special regimes                         | 308  |
|    | 21.2.1 Circuit power dominated regime                                           | 309  |
|    | 21.2.2 Transmit power dominated regime                                          | 309  |
|    | 21.2.3 Noise dominated regime                                                   | 310  |
|    | 21.2.4 Interference dominated regime                                            | 310  |
|    | 21.3 Distributed energy-efficient power control in frequency-selective channels | 312  |
|    | 21.3.1 Non-cooperative energy-efficient power optimization game                 | 313  |
|    | 21.3.2 Existence of equilibrium                                                 | 314  |
|    | 21.3.3 Uniqueness of equilibrium in flat-fading channels                        | 315  |
|    | 21.3.4 Uniqueness of equilibrium in frequency-selective channels                | 316  |
|    | 21.3.5 Conservative nature of power control                                     | 317  |
|    | 21.3.6 Spectral efficiency and energy efficiency improvement                    | 318  |
| 22 | Energy-efficient cellular network design                                        | 321  |
|    | 22.1 Fundamental tradeoffs in network resource utilization                      | 321  |
|    | 22.1.1 Spectral and energy efficiency in single-user systems                    | 322  |
|    | 22.1.2 Spectral and energy efficiency in multi-user systems with                |      |
|    | orthogonal selective channels                                                   | 323  |
|    | 22.1.3 Spectral and energy efficiency in multi-user systems with                |      |
|    | interference channels                                                           | 325  |
|    | 22.2 Energy-efficient homogeneous network deployment                            | 327  |
|    | 22.3 Energy-efficient heterogeneous network deployment                          | 330  |
|    | 22.4 Energy-efficient cellular network operation                                | 332  |
|    | 22.4.1 Energy-efficient cell breathing                                          | 332  |
|    |                                                                                 |      |

| xiv        | Contents                               |     |
|------------|----------------------------------------|-----|
|            |                                        |     |
|            | 22.4.2 Energy-efficient BS sleeping    | 332 |
|            | 22.4.3 Cell size adaptation techniques | 333 |
|            | 22.4.4 Other energy-efficient designs  | 334 |
| 23         | Implementation in practice             | 335 |
| Appendix / | A Proofs of Theorems and Lemmas        | 338 |
|            | References                             | 355 |
|            | Index                                  | 365 |

### Preface

This book provides a comprehensive introduction to the theory and practice of energy and spectrum efficient design for various types of wireless networks. The concepts and technologies are presented in a unified way for both centralized and distributed networks. The principles of the designs are stressed so that they can be applied in the broader context of wireless systems. The detailed derivations and proofs from first principles are provided. They are intended for the reader who desires a more in-depth understanding of the results. For the reader not interested in the detailed derivations, the concepts and theories are self contained and can be easily understood while skipping the derivations.

Energy and spectrum are two fundamental resources in wireless networks. A network design can always choose to optimize the utilization of one resource over the other. If one resource is redundant and the other is not, the design will need to optimize the network behavior towards better efficiency using that other resource. If both are adequate, then the system can be operated for the best user experience. If both are scarce, the design has to choose between them. Energy efficiency and spectrum efficiency are equally important and there is no clear advantage of one metric over the other. Which metric is more desired depends on network needs. This book presents a comprehensive yet rigorous discussion of the relationships between wireless channel state, energy efficiency, spectral efficiency, implementation, and network resource management in various wireless environments and their corresponding optimal designs.

The material in this book is structured into parallel discussions of energy and spectrum efficient designs, both of which are also discussed in parallell for centralized and distributed wireless networks. We hope this structure will facilitate the understanding of their similarities and distinctions.

The book is divided into four parts. In Part I, we introduce the basic concepts of wireless communications, e.g. wireless channel properties, performance metrics, conventional centralized and distributed radio resource management, that serve as the foundation to understand the book. The reader that is familiar with this background knowledge can skip this part and start from Part II directly. Part II introduces cross-layer designs for networks with central controllers and Part III for networks without central controllers. Both Parts II and III are focused on spectrum-efficient designs. Part II presents a generic framework for optimal opportunistic radio resource management in centralized networks by exploiting the multi-user diversity of time and frequency in

#### xvi Preface

wireless channels and regulating the resource allocation through network economics. Part III covers how to optimally exploit multi-user diversity in distributed wireless networks and shows how distributed random access can be designed to achieve spectrum efficiency comparable to that of ideal centralized schedulers. In Part IV, we present optimal energy-efficient transmission and resource management for both centralized and distributed wireless networks. For example, while the Shannon capacity results tell us the tightest spectrum efficiency upper bound of point-to-point communications, we introduce the tightest energy efficiency upper bounds, named energy efficiency capacity, for various types of channels. We also introduce energy-efficient centralized scheduling and distributed medium access control (MAC) and power control. The relationships between energy efficiency, spectral efficiency, and several other network performance metrics are rigorously examined. At the end of this part, we give a thorough discussion on energy-efficient cellular network designs and also on how to implement energy-efficient designs in practice.

This book is highly recommended for graduate-level courses as the primary or alternate textbook and professional tutorials in wireless networks and resource management. It provides material both to guide novice students as well as plenty of detailed in-depth material for graduate students pursuing research in the field. The book is also a useful reference for practicing engineers, academics, and industrial researchers. The only expected background of the reader is a basic understanding of probability, optimization, and digital communications. Background in wireless networks, radio resource management, and signal processing is helpful but not required, since we develop the related material in the text.

### Acronyms

| 3GPP    | 3rd Generation Partnership Project                         |
|---------|------------------------------------------------------------|
| AD      | adjustment                                                 |
| AM      | amplitude modulation                                       |
| AP      | access point                                               |
| APA     | adaptive power allocation                                  |
| AWGN    | additive white Gaussian noise                              |
| BER     | bit error rate                                             |
| BS      | base station                                               |
| C/I     | carrier to interference                                    |
| CAD-MAC | channel-aware distributed medium access control            |
| CCI     | co-channel interference                                    |
| CDF     | cumulative distribution function                           |
| CDMA    | code division multiple access                              |
| CIA-MAC | co-channel interference avoidance MAC                      |
| CoMP    | coordinated multi-point transmission                       |
| CRC     | cyclic redundancy check                                    |
| CRS     | contention resolution slot                                 |
| CSI     | channel state information                                  |
| CSMA    | carrier sense multiple access                              |
| CSMA/CA | carrier sense multiple access with collision avoidance     |
| CSMA/CD | carrier sense multiple access with collision detection     |
| CTS     | clear to send                                              |
| DOMRA   | decentralized optimization for multi-channel random access |
| DSA     | dynamic subcarrier assignment                              |
| EMMPA   | energy-efficient MU-MIMO power allocation                  |
| ESPA    | exhaustive search power allocation                         |
| EXP     | exponential                                                |
| FCC     | Federal Communications Commission                          |
| FDM     | frequency division multiplexing                            |
| FDMA    | frequency division multiple access                         |
| FEC     | forward error correction                                   |
| FFR     | fractional frequency reuse                                 |
| FFT     | fast Fourier transform                                     |
| FM      | frequency modulation                                       |

| xviii | Acronyms  |                                               |
|-------|-----------|-----------------------------------------------|
|       |           |                                               |
|       | FPA       | fixed power allocation                        |
|       | FS        | frequency selective                           |
|       | HOL       | head-of-line                                  |
|       | ICR       | interference to carrier ratio                 |
|       | ICT       | information and communication technology      |
|       | IFFT      | inverse fast Fourier transform                |
|       | LDPC      | low density parity check                      |
|       | LLC       | logical link control                          |
|       | LOS       | line of sight                                 |
|       | LS        | least squares                                 |
|       | LTE       | long-term evolution                           |
|       | MAC       | medium access control                         |
|       | MCS       | modulation and coding scheme                  |
|       | MDU       | maximum delay utility                         |
|       | MIMO      | multiple-input multiple-output                |
|       | M-LWDF    | modified largest weighted delay first         |
|       | MMSE      | minimum mean squared error                    |
|       | M-QAM     | M-ary quadrature amplitude modulation         |
|       | MSC       | maximum sum capacity                          |
|       | МТ        | mobile terminal                               |
|       | MU-MIMO   | multiple user MIMO                            |
|       | OFDM      | orthogonal frequency division multiplexing    |
|       | OFDMA     | orthogonal frequency division multiple access |
|       | OSI       | open systems interconnect                     |
|       | PA        | power amplifier                               |
|       | PAPR      | peak to average power ratio                   |
|       | PC        | personal computer                             |
|       | PDF       | probability distribution function             |
|       | PER       | packet error rate                             |
|       | PF        | proportional fair                             |
|       | PHY       | physical                                      |
|       | PSK       | phase shift keying                            |
|       | QoS       | quality of service                            |
|       | KF<br>DNO | radio frequency                               |
|       | RNC       | radio network controller                      |
|       | RIS       | request to send                               |
|       | SUMA      | space division multiple access                |
|       |           | single-input multiple-output                  |
|       |           | signal to interference plus noise ratio       |
|       |           | signal-to-noise ratio                         |
|       |           | time division multiple access                 |
|       |           | unie division multiple access                 |
|       |           | weighted fair queueing                        |
|       | WLAN      | wireless local area networks                  |